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NONLINEAR RESONANCE OF TWO-DIMENSIONAL ION LAYERS

S. A. Prasad and G. J. Morales

Physics Department

University of California at Los Angeles

Los Angeles, CA 90024-1547

A nonlinear theory of wave resonances in a two-dimensional ion layer

confined under the surf ice of liquid helium is presented. The ion layer is

modelled as a two-dimensional cold plasma fluid. In addition to the usual

nonlinearities present in the continuity equation and the equation of motion,

the theory considers a nonlinear dependence of the mass of a plasma particle

on its velocity, as suggested by indirect experimental evidence. Secular

perturbation theory is used to find the plasma response when the damped,

nonlinear system is driven externally. For typical experimental parameters,

the mass nonlinearity is found to be the dominant nonlinear effect, giving

rise to a backbending of the resonance curve.
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I. INTRODUCTION

Helium ions can be trapped just below the surface of superfluid helium.1, 2

These ions form an almost ideal two-dimensional layer held in position by

external electrostatic fields. Waves can be excited in the ion layer by an

oscillating electric potential applied to the walls of the confining cell.

As the amplitude of the applied potential is increased, the waves are

observedl to display nonlinear features such as hysteresis, indicative of a

backbending of the resonance curve. It is the purpose of the present study to

provide an analytical description of such phenomena.

The linear properties of waves in these systems can be accurately

described 3 by modelling the ions as a cold two-dimensional fluid plasma. Such

a model is used in this study to explain the nonlinear behavior. The first

source of nonlinearity considered here arises from the nonlinear terms in the

continuity equation and the equation of motion (the ponderomotive effect term)

which describe the fluid motion in the plane of the ion layer. The second

source of nonlinearity considered is a dependence of the mass of the plasma

particle on its velocity. A brief discussion of what a plasma particle is in

these systems is presented next to motivate this proposed nonlinearity.

Helium is in the liquid state at typical experimental temperatures

(< 0.2 K) and no external pressure. The presence of an He+ ion in the liquid

polarizes the surrounding helium atoms and provides enough local pressure (due

to electrostatic attraction) to freeze a sphere of about 25 helium atoms around

each ion. Since this object moves in a liquid, its effective mass is

further enhanced 4 by half the mass of the displaced fluid. Thus the effective

mass of a singly charged plasma particle is expected to be approximately 150 a.u..
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A fit of experimental data1 with linear wave theory yields similar values.

However, it has been experimentally observed1 that the effective mass obtained

by the best fit between theory and experiments increases with the temperature

of the liquid helium (in addition to depending on the external confining

fields and the ion density). For the temperature range in Ref. I

(0.1 -0.5 K), the dependence is nearly linear. The microscopic reason for

this dependence is not yet fully understood. Nevertheless, one can

hypothesize that the increase in mass m is associated with the thermal motion

of the particle and that an oscillatory motion with a velocity v (caused, for

example, by a wave) is equivalent to an effective temperature Teff = mivI 2 /2

(for two-dimensional motion or twice this value for one-dimensional motion).

This leads to a dependence m = mo[l + 81Sv2 ] where the coefficients mo and 8

depend on the external holding fields and the static ion charge density. The

value of B in typical experiments1 is on the order of 10- 7 cm- 2s 2 .

The experiments on ion layers have typically employed a cylindrical

geometry and efforts are now underway to use a rectangular geometry.'In the

present work, the simpler Cartesian model is emphasized for clarity of exposi-

tion, but the corresponding results for the cylindrical case are also

described. Previous workson the nonlinear waves in Cartesian two-dimensionai

plasmas makes idealized assumptions on the equilibrium density profile and

uses boundary conditions (satisfied by the wave potential) which are not well

justified; furthermore, only the ponderomotive nonlinearity is considered.

The goal of the present work is to present a rigorous treatment,

F(* r 'C
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including exact equilibrium profiles and correct boundary conditions, of the

nonlinearities present in the continuity equation and the equation of motion

as well as the mass nonlinearity.

The paper is organized as follows. The Cartesian geometry of the model

and the basic cold plasma fluid equations satisfied by the ion system are

described in Sec. II. Secular perturbation theory is used to solve the

nonlinear equations. Static equilibrium described by the zeroth order

equations is obtained in Sec. III. The first order equations comprise an

eigenvalue problem for the wave potential and are discussed in Sec. IV.

Solutions to these equations exist only for certain eigenvalues of the

frequency. Included in the analysis of the second order equations (Sec. VY

are the static ponderomotive potential as well as the plasma response at the

second harmonic. Analysis of the third order plasma response at the

fundamental frequency is presented in Sec. VI. The homogeneous part of the

equation is identical to the first order equation and therefore the existence

of a finite solution requires that the inhomogeneous part must be orthogonal

to the first order solution. This condition yields the shift in the linear

resonance frequency caused by the various nonlinear terms considered. It is

found that the dominant contribution in a typical experimental ion layer

is the mass nonlinearity which gives rise to a backbending of the resonant

curve. The analogous results for cylindrical geometry are presented in Sec.

VII. Conclusions are presented in Sec. VIII.



II. GEOMETRY AND BASIC EQUATIONS

The Cartesian model geometry is shown in Fig. 1. A two-dimensional

plasma strip, translationally invariant in y (i.e., perpendicular to the plane

of the paper) and of width 2a in the x-direction is confined at z = d by

equilibrium external potentials OtO , 0 and Obo applied to the top, side and

bottom of a confinement cell of width 2L and height h. The ions are held

just below the liquid helium surface by the combined effect 3 of the external

holding fields and the dielectric polarization of helium. The ion layer, which

is almost ideally two-dimensional, lies at the liquid surface and forces

responsible for its vertical equilibrium are not explicitly considered here.

Furthermore, since the potential well in z for the ions is narrow and deep,

and since frequencies considered here are small compared to the bounce

frequency in this well, vertical motion of the ions is ignored. Finally, only

modes with wave vector component ky = 0 are considered. These are the

Cartesian analogs of the azimuthally symmetric modes measured in the

cylindrical geometry experiments of Ref. I. The cold fluid equations which

describe the two-dimensional ion system have the form

- + i- ( or) 0 (1)ax

m r a ,+ vv + v -vl = -q - o + *eo + oew)z = d (2)

V20 = -4wqa6(z-d) , (3)

where V2 = a2 /ax 2 + a2 /az 2 . The continuity equation (1) relates the rate of

change of the areal charge density o(x,t) to the velocity v(x,t) in the plane

of the charges. Equation (2) is the equation of motion of a particle of mass

m and charge q under the influence of *(x,z,t), the potential generated by the
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plasma particles, *eo(xz), the external confinement potential and ew(x,z,t),

the external potential applied to excite waves. As indicated in the Introduc-

tion, the particle mass m is assumed to depend on the velocity as m = nor1+,qv21.

Unlike Eqs.(I) and (2) which are defined only in the plane z=d of ttie charges,

Poisson's equation (3) is a three-dimensional equation relating the plasma

potential * to a, subject to the boundary condition * = 0 on the walls z = O,h

and x = ±L of the confining cell.

Before solving Eqs. (1)-(3), it is convenient to express them in terms of

dimensionless variables defined as follows:

q +Lq 2 eo ,eo q q ew+ew
moL2 p 2 moL2 p 2  pmoL2 p2

(pt + t +() a

I V

WP

v + v , (Lwp)2 8 + , (4)

where 6  Wp2 = 4q 2
0() (5)

with ao(O) being the equilibrium density at x = 0. In terms of the new

variables, Eqs. (1)-(3) take the form

a(o':) = 0 , (6)

r+ lvl 2 + V
a- + vv + v v] = - - + *eo + *ew) z = d ' (7)

and
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V2 = -a6(z-d) (8)

Secular perturbation theory i; used to solve Eqs. (6)-(8). The plasma

variables *, a and v are expanded in a perturbation series with E = 6a/(o as

the small expansion parameter; ao is the equilibrium density and Sa the

density perturbation produced by a wave driven by ew = el coswt. The

zeroth order terms of the expansion series represent the time-independent

equilibrium values and the first order terms represent linear waves with a

time dependence - cos wt. In the absence of damping and nonlinearities, the

plasma response has resonances at certain discrete values wOn (n = 1, 2, . .

.) of the frequency as shown in Sec. III. The inclusion of damping results

in a Lorentzian resonance peak centered at won, of width v and amplitude *el/v

(for 6 ). This implies that for the perturbation expansion to be consistent,

one must have *el/vo - 0(c), where *o = moL2Wp 2/q. Including just the

nonlinearities in Eqs. (6) and (7) gives rise, in the second order, to

time-independent terms as well as second harmonic terms - cos2wt which provide

a third order correction to the equation satisfied by terms proportional to

coswt. This has the effect of causing a shift - 0(e 2won) in the value of the

resonance frequency won. When the damping and the nonlinearities are both

effective, the resonance curve has a finite amplitude and is asymmetric about

won. To mathematically treat the two effects together, it is convenient to

formally order v - O(e2a0n) so that the damping and the nonlinearities first

appear in the same order, namely the third; this also implies that *el/ o ~

0(e 3 ). The resulting approximation to the solution can, however, be used for

all values of v.
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With the scales *el - (3), the perturbation series tor t, a

and v have the form

f ' feo + tew too + eo + [1 j1 e + c.c.1 + 20

+ [t22e - 2i t + c.c.] + [(013 + Oel)e - i  + C.c.] + (9)

= U0 [lle -1 " + c.c.] + 020 + [G22e + c.c.1

+ ra3ie + c.c.1 + • • • , (10)

v Iv e - 1wt -i wt

Svle + c.c.1 + fv -2i t + c-c.1 + [Vte + c.c.]

+ • • •. (11)

where vo0 and v20 are zero since there is no steady drift of particles in

the x-direction. The components on the right-hand sides of Eqs. (9)-(11) have

two subscripts, the first one referring to the order of perturbation and the

second to the harmonic content. It should also be noted that the spatial

dependence in Eq. (9) is on x and z while a and v of Eqs. (10) and (11) are

defkined only in the plane z=d of the plasma layer.

Equations (9)-(11) are substituted in Eqs. (6)-(8) and terms with the

same time dependence and the same order in e equated. Since the modifications

to the resonance curve due to nonlinearities is the primary concern of the

present work, the frequency w is written w = wo + w where wo is the linear

resonance frequency and 6 - w-wo 0(v) - 0(c 2*o). The next four sections

discuss the resulting equations in the first four orders of perturbation.
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III. EQUILIBRIUM

In the zeroth order, the equations are time independent and describe the

equilibrium density profile. In addition to the condition voo = 0, Eqs. (b)-

(8) in the zeroth order yield

d [0oo(x, z = d) + Oeo(x,z = d)J = 0, (12)

within the plasma, and

(=2 + - aoo(x) 6(z-d) (13)

3x2  3Z

subject to the boundary condition Ooo = 0 at the cell walls. The external

potential Oeo takes on the values OtO, 0 and bO on the top, side and bottom

of the confinement cell.

Equations (12) and (13) can be solved for the equilibrium density profile

aoo(x). Using the Green's function, Eq. (13) yields

*oo(x,z = d) - f dx'aoo(x')

I

.I sinh(n + -Lswd sin~ + 1)w(h-d) !(
X 1 ssnh7n +- 9hd cos(n + -)rx cos + )+x' • (14)

n (n + )sinh(n +

Substituting this result in Eq. (12) and using a discrete grid for x reduces

the determination of aoo(x) to a matrix inversion problem which can be

uniquely solved for any choice of the plasma width 2a and the ratio *tO/Obo.

The equilibrium profile aoo(x), numerically obtained for the scaled values

d = 0.1, h = 0.2, a = 0.78, OtO/ObO = -7 and for a grid with 256 points is

displayed in Fig. 2. The profile is nearly rectangular with the edge becoming

sharper 3 with decreasing values of h.

_i' ,t , ;,y '..' ',,' .;-, .:.,. , .. '..- ..-. ,. ,.:... ..-,-._.., .', 'i' .' --....- ,..-Y .
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IV. LINEAR THEORY

Only terms oscillating at the fundamental frequency are present in the

first order equations arising from Eqs. (6)-(8):

dx-iwa 11 + d-f oovt (15)

d
-iovll= - d ll(x,z = d) (16)

V2 = - all 6(z-d) . (17)

These equations can be combined to give

-w0
2 V201, + -" [aoo(x) 3O--] 6(z-d) = 0 (18)

which on integrating across the plasma layer z = d, yields

r3*lI D€II p

-o 2 raz d+ +z d_ ] ro(x) d , *(xlz = d)] = 0 , (19)

where Oll satisfies the boundary condition Oll = 0 at the walls of the cell.

Equation (19) is an eigenvalue equation which can be satisfied only for

certain discrete values of wo. It is solved by using the expansion

1~

cos(n + -f.ix

011(X,Z) = Bn X
n sinh(n + I)nd sinh(n + L)w(h-d)

sinh(n + .L)wd sinh(n + 1)7(h-z) z > d

sinh(n + -L)7rz sinh(n + )r(h-d) z < d , (20)

2A



and the orthogonality of sines and cosines to yield

D(wo) B =0 , (21)

where the elements of the matrix D are given by

1no sinh(n + 7)irh

Dmn~w) wo2 (n + 2) sinh(n + +V)rd sinh(n + .-)w(h-d) m

- (n + -1) (m + -1) w2 f dx aoo(x) sin(n + 7 )rx sin~m + 7)1X , (22)
-1

and B is a vector whose components are Bn of Eq. (20). The eigenvalues WOl,

W02, W03, • . . for which IDI = 0 and the corresponding eigenfunctions Oil are

obtained numerically. As an example, the shape of oli(x,z = d) corresponding

to the eigenvalue wrO = 0.83 for the profile aoo(x) is displayed in Fig. 2.

The oscillations seen in Oil near the wall are of numerical origin. The

x-dependence of the eigenfunctions on the z = d plane can be closely

approximated 3 by a single cosine function inside the plasma. The approximate

wave function cos 3.8x is shown as a dotted curve in Fig. 2 for comparison.

Since Eq. (18) is homogeneous, the amplitude of Oil is undetermined

within the perturbation scheme. By demanding the existence of a finite

solution to the third order equation one obtains a relation (resonance curve)

between the amplitude of Oil and the frequency w for a given external driver

Oel
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V. SECOND ORDER EQUATIONS

The second order equations contain the static (zero trequency) nonlinear

distortion as well as the second harmonic response at 2w. The zero trequency

components of Eqs. (6)-(8) are

d
av (oilvIji + all*Vji) = 0 , (Z3)

dvII* * dvii I d
V 1 1 dx + vi d - f 20(x,z = d) (24)

V2=20 - - a20 6(z-d) • (25)

Equation (23) is trivially satisfied for all and vli given by Eqs. (15)-(17).

Equation (24) relates two perfect differentials and can be integrated in x to

yield the "ponderomotive" potential

*20(x,z = d) = - IviiI 2 + C , (2b)

where C is an as yet undetermined constant. Using the Green's function tech-

nique of Sec. III, Eqs. (25) and (26) can be reduced to a matrix equation and

numerically solved for a20 , given vll [from linear theory] and G. The

value of C is chosen so that

f dx a20(x) - 0 , (27)
-1

which implies that charge is conserved. The shape of the nonlinear static

density modification, a20(x), corresponding to the linear eigenvalue w(jl -

0.83 is shown in Fig. 3. It is observed that the ponderomotive force enhances

the plasma density at the center x=0 and at the edges x=-±a and depletes the

plasma elsewhere.

The second harmonic components of Eqs. (6)-(8) are
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d

2iw a 2 2 + d-x (a0 V2 2 + all vl) = 0 , (28)

dvl d
-21wo v22 + vil dx - 22(xz = d) (29)

V2$22 = - a22 6(x-d) , (30)

which can be combined to yield

- (2wo) 2 V2 22 + ' rx [aoo(X) -.221 S(z-d) =

dvii

aoo(X) v + 2iallvl 1 ] 6(z-d) (31)

Following Sec. IV, Eq. (31) can be expressed as a matrix equation

D(2wo) E = F , (32)

where the matrix D is given by Eq. (22) and the vectors E and F are defined by

*22(x,z - d) - I En cos(n + l)rx (33)
n

faoovll dvll + (34)

oo+ 2iwoilVl ] = Fn cos(n + -1x (34)
n

The numerical solution of Eqs. (32)-(34) for *22(x,z = d) can be readily

obtained, once the first order quantities all and vil have been determined

from linear theory. For the first few resonance frequencies, 2wo is not near

4 zero of D(w)' and hence the amplitude of *22 is small (compared to

V1
2 ). rhiis, kqs. (2I) and (29) can be used to obtain good approximations for

v "d hv ignoring $22 in Eq. (29).

v2 n, * by **,) in * _. in • -
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VI. THIRD ORDER EQUATIONS

The third order terms which oscillate at the fundamental frequency

satisfy the equations

d *
- i6Wall - iwoa 3 1 + d (aooV3 + 011*V22 + U20 Vll + a22Vl*) = 0 (35)

_dvll* dv2 2
- it6wV11 + WVl - iwo8IViI 2 Vl. - iwov3l + v22 dx + vI dx

dd

d-x [3l(x,z = d) + Oel(X,Z = d)] , (36)

V2 031 = - 031 6(z-d) (37)

These equations can be combined to yield

- wO2 V 2 0 3 1 + -x f°o(x) -- -x 6(z-d)

= [-ro -i
r-2w 0saii - 00 lao iel + V22v1i +ovvll

+ iWo (arll*v22 + 020Vll + 022Vl*) - ioooslvllI2v ll 6(z-d) . (38)

The operator acting on 031 is the same as the linear Hermitean operator of

Sec. IV. This property can be used to find a necessary condition for the

existence of a bounded solution 031 of Eq. (38). Multiplying Eq. (38) by 4il

and integrating over the volume of the cell, it is seen that the left-hand side

can be integrated by parts twice using the boundary conditions 41l = 0, 431 0

at the walls to obtain a volume integral of 431 multiplied by the linear

operator acting on ii. But this is zero from Eq. (18). Therefore, the volume

integral of the right-hand side of Eq. (38) multiplied by Oii is also zero, i.e.,
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dx * 1 1(x,z = d) f- 2wowa11 - '- [aoo '- {el(x,z = d) + v22v11 *I
-1

+ oovvll + iwo(all*V22 + a20VII + a22v11*)

- iWoaoIvI1IIv11 = 0 . (39)

Writing *11 = A *ll where *11 is the linear potential normalized

such that Max. *(x<a) = I [where * = w0-l(d/dx)sii(x,z = d)] and A is the

complex amplitude of *11 in this normalization, Eq. (39) can be expressed as

- 2 - A a, + a2 - 1.V A al + JAl2 A a3 = 0 (40)

where al, a2 and a3 are real quantities defined as

al = Wo 2  f dx aoo 2  
, (41)

-1

d

a2 = wo f dx aoo d - *el(x,Z = d) , (42)
-1

a3 - f dx f-- aoo d 'P d 22 - )1
-1

d (ao°°) (" ( 22 -1 *2) + 02o.20 2

2 xdx 2 2)+(a2'

+ _L*2 d roo dL 22 -1 2) !L (ao
2 dx 2 dx 2 dx

-W0
2 a0o8 041

3 + (43)

with
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* = _.d (x,z = d) • (44)
Wo dx

As described in the previous section, *22 can be ignored (in comparison with

*2) in Eq. (43) for the first few modes. Letting A = lAlei6 in Eq. (40),

equating real and imaginary parts and eliminating 8 yields

-L .2 V2oq2 IJ1

Wr2_ 1  a3 JA121 +- I Al2  =22
0 ° 2 = 12

or

11W - Wo - wolAI 22 + '- 1 JA1 2 = a22 W° (45)

Equation (45) gives the frequency response curve, IAI vs. w, where JAl is the

amplitude of fIj, for any value of the driver el or equivalently a2. For

small values (i.e., <() of the 'nonlinearity parameter'

p -- (a3/2al)(a22 /aj2 )(Wo3/V3 ), IAI is small and hence the term (a3o/2al)lAI2

can be ignored leading to the damped linear result, namely a Lorentzian

response curve with lA1 2 - [(w-wo)2 + v2/41- 1 . For p ) 1, the effects of

nonlinearity become important, causing a frequency shift pv in the position of

the response curve peak; the curve bends forwards or backwards depending on

whether p (or a3) is positive or negative. Figure 4 displays plots of

normalized square amplitude (al12 /a2 2 )(v 2/Io 2 )IA 1
2 vs. the frequency I

difference (W-wo)/v for the values 0, ±1, ±5 of p.

The numerically obtained values of C1, a2 and a3 for the lowest four

modes (which are of even parity in x) and for tel(x = ±L) = 1, tej(Z = 0,i) = 0

are presented in Table I. The value of $ which causes the mass non-

linearity C35 to cancel the other nonlinearities (3l, ct32, a33 and 34)

is denoted by Ocrit and has the value ul0 for all the modes shown. Since the
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value of B [scaled as in Eq. (4)] estimated for typical experiments is l '(lj 5 ),

the effect of the mass nonlinearity (a3 5 ) overwhelms the other rionlinearities.

Since L35 is negative, the frequency response curve bends towards

lower frequencies with increasing amplitude due to a decrease in the value ot

of the plasma frequency as the effective mass increases with the amplitude

of the wave; this leads to a lower value of the resonance frequency.

Good approximations to the values of the coefficients aj given in Table I

can be obtained by noting that aoo(x) [Fig. 1] can be approximated by a

step-function density profile of unit height and width 2a. Also, one can write

= sinKx as a consequence of the single cosine approximation to $1 1(x,z = d)

for IxI<a, as illustrated in Fig. 2; the best fit values of K given in Table I

can be approximated by Kn = nw/a (corresponding to the resonance frequency

won). This leads to al = w0
2a. Approximating Oel(x,z = d) - (40w/w)exp[(x-L)/h]

if a is not too close to L, the integral (42) can be performed yielding

-1
C12 - (-l)n+ l 8kw(Knwo/h)r(w/h)2 + Kn2 ] exp[w(a-t)/hJ. Also, as mentioned in

Sec. V, $22 can be ignored in comparison with ,2 leading to a3l = a32 =

Kn2a/8, a33 - -wo 2 (Kna/2)sinh2Knh[sinh2Knd sinh2Kn(h-d)]
- 1, a34 = 3Kn2a/8

and a35/8 - 3wo2 a/4. The estimate for (33 makes use of the approximation

*20(x,z = d) = -v12 + const = -(l/ 2 )cos2Knx leading to

cos2Knx sinh2Knd sinh2Kn(h-z), z>d

020(x,z) 2 - 2sinh2Knd sinh2Kn(h-d) sinh2Knz sinh2Kn(h-d), z<d

(4b)

and hence to

"20(x)2() Kn sinh2KnI
a20(x) az Id+ - z d_ sinh2Knd sinh2Kn(h-d)

(47)

)if
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This value for a20 is used in Eq. (43) along with , - sinKnx to obtain the

estimate for a33.

The coefficient a33 represents the self-modulation effect arising from

the static ponderomotive density modification a20. One cau also consider the

cross-modulation effect of a20 (produced by the nth mode) on the frequency of

the mth mode. To isolate this effect, it is convenient to use the variational

principle expression 3 for Wom 2 obtained by multiplying Eq. (18) by *II and

integrating over the volume of the cell:

2 d = 2
2 dx coo(x) *11m(x,z d)l-I

Wom= h I 2 (48)

fdz f dx rv*11m(X,Z)1
0 -1

If aoo is replaced by Coo + 020n where 020n is a small static density pertur-

bation produced by the nth mode, then the fractional change in wom 2 is

I
(02 f dx a20, %m2

2 
(49)2

Wom f dx %0 *M2
-1

where *m a (d/dx)+Ilm(x,z = d). Approximating coo by a rectangular profile

of width 2a and using the approximations Om = sinKmx = sin(mwx/a) and Eq.

(47) for 0 20n, yields zero for the numerator on the right hand side of Eq.

(49) unless m = n. Thus the ponderomotive density modification due to any

mode is expected to have little effect on the resonance frequencies of other

eigenmodes. In numerical computations using exact density profiles and

eigenfunctions, for example, a 10% density perturbation produced by the first

mode causes less than 1% change in the resonance frequencies of the next

three modes.
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VII. CYLINDRICAL GEOMETRY

The Cartesian results of Secs. II-VI can be extended in a straightforward

manner to the azimuthally symmetric modes of relevance to the cylindrical

geometry used in the experimental arrangement of Ref. 1. One again obtains

Eq. (45) with JAI being the amplitude of the linear mode and al, a2 and a3

given by

1

al= W 2  f rdr aoo(r) *2  (50)
-l

d

(2 = Wo f rdr oo(r) 4, d 4ej(r,z = d) , (51)
-1

1

a3 - (o 2  f rdr aoo(r) 4  
, (52)

0

where now the lengths (r, z, d, and h) are scaled in terms of R, the radius of

the cell, the density in terms of aoo(O), the frequencies in terms of

= [4wq 2 oo(O)/moR] 1/ 2 and a in terms of (Rwp)- 2. Also * =

wo- I (d/dr) *ll(r,z = d). In writing Eq. (52) it is assumed that the contri-

bution from the mass nonlinearity is the dominant effect. To find useful

approximations of al, a2, and a3, it is noted that in the cylindrical case 3

also, coo(r) is nearly a rectangular profile of unit height and width a and 4

J(j inr/a) to a very good approximation for 0 4 r € a. Also ej(r,z = d)

(4w/i) Io(wr/h)/Io(n/h) if a is not very close to 1. In the expression for

and *el, J and I are the Bessel function and the modified Bessel function,

respectively and j are the zeros of JI. Using these approximations yields
In

I

2 Wo 2a 2 j o2 (j in) , (53)

V.W e
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a 4_ow J In II(7ra/h)

h (Jln/a)1 + (Yr/h) 2 l 0 (/h) Jo(Jln) (54)

and

a
3 - % 2  f rdr J, 4 (Jln E) . (55)

0

The numerical values of a,, a2, a3 [obtained from Eqs. (53)-(55)] and

p/(Bwo#w 2 ) = a3a22Wo2/2aI 3Ow 2 (which is independent of wo) are displayed in

Table II for the first four azimuthally symmetric modes for typical experi-

mental parametersl h = 0.2 and a = 0.895. The nonlinear frequency shift is

pv as in the Cartesian case.

£
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VIII. CONCLUSIONS

Using a cold plasma fluid model for the ion response, a nonlinear theory

of wave resonances in a two-imensional ion layer confined under the surface

of liquid helium, has been developed. Lindstedt-Poincare theory of secular

perturbation is used to calculate the nonlinear response of the plasma when

damping and an external driver are both present.

It is found that the usual nonlinearities associated with the continuity

equation and the equation of motion give rise to a positive nonlinear shift in

the value of the resonance frequency. However, the experimentally measured

frequency shifts are negative.

A survey of the experiments suggests the possibility of another source

of nonlinearity, namely, a quadratic dependence of the effective mass of a

plasma particle on its velocity. For instance, it has been observed1 that the

effective mass of an ion increases roughly linearly with the temperature of

liquid helium, from a value -35.2 mHe at O.1K to -39.6 mHe at 0.4 K for an ion

density of 7xlO 7 cm- 2 . Postulating that the oscillatory motion of an ion due

to a wave corresponds to an increased effective temperature with AT = mlvI 2

(for one-dimensional motion), one obtains m = mo[l + BSvI 2 ] where mo 34 mHe

and B - 6.7x10- 7 cm-2 s2 . Scaled in terms of (Rwp)- 2 where R is the cell

radius and wp - [4wq 2 o(O)/mR]1 / 2 , the coefficient B has the estimated

value a9xlO 5 . The increase in the mass with the amplitude of the wave leads

to a decrease in the value of wp and to a decrease in the value of the

resonance frequencies. The large value of the scaled B insures that the

negative shift of the resonance frequency due to mass nonlinearity overwhelms

the contributions from the nonlinear terms in the continuity equation and the

equation of motion. Using Table 1I and the valuel v = 2.74xl0 - 2 WP, one

obtains, for the lowest azimuthally symmetric mode, 2L L2 (1 - k w2)

% %
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where 1w is measured in volts and C = 1100 V-2 . This value of C is to be

compared against the experimental value of 200 V-2. There is also some

experimental evidence7 that v also increases nonlinearly with amplitude; this

would lower the theoretical prediction for . however, the important point is

that our conjecture of a mass nonlinearity gives the correct sign of the

effect and yields results close to the experimentally observed values, in

spite of various uncertainties regarding indirect measurements.

Since at the present time there does not exist a first-principles theory

capable of predicting the value of 8, and since it is also possible that its

value may vary from one experimental set-up to another, in this study we have

introduced the concept of a critical 8. Its numerical value is illustrated in

Table I. Physically, 8crit defines the regime beyond which the usual fluid

nonlinearities become less important than the mass nonlinearity. This may be

a useful tool in assessing the operational regime of future experiments.
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FIGURE CAPTIONS

Fig. I Cartesian model geometry.

Fig. 2 Scaled equilibrium density profile 00o(x) for the soaled (to L)

values d = 0.1, h = 0.2, a = 0.78, to/Obo = -7 and the eigen-

function *11(x,z - d) (solid curve) corresponding to the lowest

eigenvalue wol = 0.83. The dots are a plot of cos3.8x.

Fig. 3 Nonlinear static density modification a20(x) (produced by *j1

of Fig. 2) scaled in terms of 100 [Max v 1(x 4 a)]2 .

Fig. 4 Frequency response curve in which the square of the amplitude

JAI is plotted vs. the driver frequency for the values 0, +1, +5

of the 'nonlinear' parameter p - (a3/2ai)(a2 2 /a1 2 )(wo 3 /V 3 ).
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TABLE CAPTIONS

TABLE I. Scaled numerical values of wo, K, al, 02, 131, a32, a33, a34

and M35/0 for Cartesian geometry and the scaled ( to L) values d =

0.1, h = 0.2, a = 0.78 and *to/*bo = -7. 6crit is the value of S

for which the frequency shift produced by the mass nonlinearity

cancels the frequency shift produced by fluid nonlinearities.

TABLE II. Scaled numerical values of al, a29 a3 and the nonlinearity

parameter p obtained from the approximate Eqs. (53)-(55) for the

scaled (to L) values d = 0.1, h = 0.2, a = 0.895 corresponding to

typical experiments in cylindrical geometry.
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